ARE THE BORROMEAN RINGS A-B-SLICE*

Michael H. FREEDMAN

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Received 22 April 1985

A generalization of the slice problem for links is presented. The general 4-dimensional, topological surgery problem may be recast in this light.

AMS(MOS) Subj. Class.: 57M25, 57Q45, 57S25		
surgery	topological	link theory
4-dimensional	group actions	Borromean rings

The preceding note [1] establishes an equivalence between topological 4dimensional surgery and an extension problem for actions on S^3 . Existence of (admissible) extensions implies a curious property, which we call A-B-slice, for the Borromean rings.¹ Possibly, someone can show that the Borromean rings are not A-B-slice. If so, the 4-dimensional surgery theorem (and the 5-dimensional proper s-cobordism theorem) is contradicted.

Define a *decomposition* of B^4 to be a pair of smooth, compact codimension-0 submanifolds with boundary $A, B \subset B^4$ satisfying:

(1)
$$A \cup B = B^4$$
,

- (2) $A \cap B = \partial^{-}A = \partial^{-}B$,
- (3) $\partial A = \partial^+ A \cup \partial^- A$, $\partial^+ A = \partial A \cap \partial B^4$, $\partial^+ A \cap \partial^- A =$ the Clifford torus $S^1 \times S^1 \subset S^3 = \partial B^4$, and similarly
- (3') $\partial B = \partial^+ B \cup \partial^- B, \ \partial^+ B = \partial B \cap \partial B^4, \ \partial^+ B \cap \partial^- B = \partial^+ A \cap \partial^- A.$

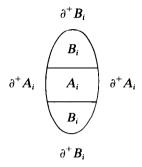
Roughly put, a decomposition of B^4 is some extension to B^4 of the standard genus = 1 Hegard decomposition of $S^3 = \partial^+ A \cup \partial^+ B$.

Suppose $L \subset S^3$ is a tame link of *l* components with tubular neighborhood *n*. Let D(L) be the 2*l*-component link obtained by pushing off an untwisted (i.e., linking number equal to zero) parallel to *L*. We say *L* is *A*-*B*-slice if there exist *l* decompositions: $(A_1, B_1), \ldots, (A_l, B_l)$ of B^4 and 2*l* self-homeomorphisms of B^4 $\alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l$, such that the entire collection: $\alpha_1 A_1, \ldots, \alpha_l A_l, \beta_l B_1, \ldots, \beta_l B_l$ are pairwise disjoint and satisfy the boundary data: $\alpha_i \partial^+ A_i$ is a tubular neighborhood of the *i*th component of *L* and $\beta_i \partial^+ B_i$ is a tubular neighborhood of the *i*th component of *L*, $1 \le i \le l$.

^{*} Supported in part by NSF DM583-03126 and the MacArthur Foundation.

¹ And also for any iterated-ramified Bing double of the Hopf link.

Observation 1. If L is slice (in the topologically flat sense) then L is A-B-slice. Simply choose the decompositions (A_i, B_i) so that $(A_i, \partial^+ A_i)$ is a 2-handle and $(B_i, \partial^+ B_i)$ is a product collar $\approx (\partial^+ B_i \times I, \partial^+ B_i)$.



Observation 2. If the linking number between two components is non-zero, Link $(L_i, L_j) \neq 0$, then L is not A-B-slice. Let $a_i \subset \partial^+ A_i$ and $b_i \subset \partial^+ B_i$ be the core circles of the solid tori. Considered as cycles, it is impossible for both a_i to bound a rational 2-chain in A_i and b_i to bound a rational 2-chain in B_i ; this would compute $0 = \text{link}(a_i, b_i) = 1$. On the other hand, if one (say a_i) does not bound, then the other must, for we have:

Note that $\alpha[a_i]$ links $[a_i]$ in B^4 so it cannot be in the image of β . Thus, $\partial \alpha[a_i]$ is non-trivial and hence a multiple of $[b_i]$. Now suppose L is A-B-slice with respect to the decompositions $(A_1, B_1), \ldots, (A_l, B_l)$. For all $i = 1, 2, \ldots, l$, there is exactly one side A_i or B_i , in which the core circle $(a_i \text{ or } b_i)$ bounds a rational 2-chain. The imbeddings $\alpha_i|_{A_i}$ or $\beta_i|_{B_i}$ carry these 2-chains disjointly into B^4 . Adjusting for the slight difference between components of L and its parallel, all components of L bound disjoint rational 2-chains, so all pairwise linking numbers are zero, link $(L_i, L_i) = 0$.

Proposition. The 4-dimensional topological surgery 'theorem', if true, implies that the Borromean rings are A-B-slice.

Proof. In the notation of the preceding note and by a similar shrinking argument, $\hat{\mathscr{G}}(Wh(Borromean Rings))$ is homeomorphic to S^3 . Thus there is an admissible action of F_3 on S^3 with fundamental domain $\Delta = S^3 - (D(Borromean Rings))$ for $\omega|_{\Omega_m}$. Our assumption of surgery and Theorem 2 (of the preceding article [1])

gives the admissible extension $\bar{\omega}: F_3 \to \text{homeo}^+(B^4)$. The quotient $\Omega_{\bar{\omega}}/\bar{\omega} = N^4$ may be cut open along topologically flat 3-manifolds (use Top transversality [3]) to obtain a manifold fundamental domain $\bar{\Delta}$ for $\bar{\omega}|_{\Omega_{\bar{\omega}}}$ with $\bar{\Delta} \cap \partial B^4 = \Delta$.

The closed complement $cl(B^4 - \overline{A})$ has six connected components which may be labelled $A'_1, A'_2, A'_3, B_1, B_2$, and B_3 so that the natural generators x_1, x_2 , and x_3 satisfy $\overline{\omega}x_i(A'_i) = cl(B^4 - B_i) \stackrel{def}{=} A_i$ for i = 1, 2, 3. Since every component of $cl(S^3 - \Delta)$ is an unknotted solid torus, $(A_i, B_i), i = 1, 2, 3$, are (topological) decompositions of B^4 . Notice that $((\partial A'_1 \cup \partial A'_2 \cup \partial A'_3) \cup (\partial B_1 \cup \partial B_2 \cup \partial B_3)) \cap \partial B^4$ is simply $cl(S^3 - \Delta)$ with $(\partial A'_1 \cup \partial A'_2 \cup \partial A'_3) \cap \partial B^4$ being a tubular neighborhood of the Borromean rings and $(\partial B_1 \cup \partial B_2 \cup \partial B_3) \cap \partial B^4$ a disjoint tubular neighborhood of the parallel copy.

Taking $\alpha_i = \bar{\omega}x_i$ and $\beta_i = \mathrm{id}_{B^4}$, i = 1, 2, 3, nearly completes the construction of the *A-B*-slices. The remaining point is that the decompositions of B^4 , (A_i, B_i) , i = 1, 2, 3, are into codimension zero topological submanifolds rather than smooth. To obtain smooth decompositions, simply approximate the intersection $A_i \cap B_i = \partial^- B_i$ relative to a neighborhood of $\partial(\partial^- B_i)$ (where $\partial^- B_i$ will already be smooth if transversality is applied carefully in the construction of $\overline{\Delta}$) by a smooth submanifold to obtain a new decomposition $(\tilde{A}_i, \tilde{B}_i)$ with $\partial^- \tilde{B}_i$ near $\partial^- B_i$. By compactness, the six subsets $A'_1, A'_2, A'_3, B_1, B_2, B_3 \subset B^4$ have some minimum separation $\varepsilon > 0$, thus using continuity of α_i^{-1} , δ -approximate $(\tilde{A}_i, \tilde{B}_i)$ to (A_i, B_i) , i = 1, 2, 3, so as to preserve the pairwise disjointness of the six subsets; i = 1, 2, 3.

Conversely, the existence of A-B-slices for the Borromean rings implies that the whitehead double Wh(Bor) is Top-flat slice with π_1 (slice complement) freely generated by meridians (see [1]).

It follows from [2] and a little decomposition space theory that the elementary Whitehead link is A-B-slice. This is noteworthy since the Whitehead link is not slice (and in fact does not even bound disjoint maps of disks into B^4).

It appears to be a routine application of Donaldson's theory to show that the Borromean rings do not satisfy the smooth category analogy of A-B-slice condition. \Box

References

- [11] Michael Freedman, A geometric reformulation of four dimensional surgery, Topology 24 (1985) (this issue) 135-143.
- [2] Michael Freedman, Wh₃, to appear.
- [3] Frank Quinn, Ends of Maps, III; Dimensions 4 and 5, J. Diff. Geom. 81 (1982) 503-521.